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Synopsis 

Mole balance for the molecular weight distribution in homogeneous continuos-flow stirred tank 
reactors (HCSTRs) for reversible step-growth polymerization has been written. The relation for 
the moment generating function G is found to be a nonlinear ordinary differential equation and 
has been solved analytically. The solution of the MWD of the polymer formed is shown to be 
valid even if the condensation product is removed. At  equilibrium, the solution reduces to the 
Flory distribution. The computations show that the polydispersity of the polymer first increases 
with the residence time 0 of the reactor, but, for large 0, it reduces to the equilibrium value after 
undergoing a maximum. 

INTRODUCTION 

In step-growth polymerization, growth occurs through the reaction of 
reactive functional groups on the groups on the polymer.'-7 If the starting 
monomer is bifunctional, the polymer formed is linear. If the monomer is 
multifunctional, the resulting polymer is either branched or a network. The 
step-growth polymerization of bifunctional monomers (schematically denoted 
as ARB type, where A and B are the reacting functional groups) can be 
represented as 

(1) 
k, 

P, + P,,, k;. P,+, + W, n ,  m = 1 , 2 , . . .  

In this representation, P, is a polymer molecule having n repeat units and W 
is a low molecular weight condensation product. The reacting functional 
groups A and B on P, are always found to be at  chain ends and the molecule 
is strictly linear in structure. 

Polymerization can either be carried out in batch or continuous reactors. As 
higher and higher throughputs are desired, the economy of large reactors 
demands that continuous reactors be used and usually either tubular reac- 
tors or a tank with agitators are employed.2-6 These are idealized as plug 
reactors (PFRs) and homogeneous continuous-flow stirred tank reactors 
(HCSTRs). The performance of these ideal reactors has recently been re- 
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The original analysis of Flory for the molecular weight distribution (MWD) 
of the polymer formed by the step-growth mechanism in batch reactors 
assumed an equal reactivity hypothesis. The polymerization is assumed to be 
irreversible in order to keep the analysis simple. Generalized kinetic balance 
relation valid for all oligomers is written. The infinite set of equations arising 
from this relation collapse into a single equation from which the net polymer 
concentration is analytically obtained. 

Using this information the time-dependent MWD can, in principle, be 
solved sequentially. The MWD of the polymer is usually termed as Flory's 
most probable distribution and has been shown to be completely characterized 
by the conversion of functional groups. If the feed to the batch reactor is pure 
monomer, the polydispersity index (Q) of the polymer is found to bo limited 
to a maximum value of 2. Kilkson",12 has subsequently analyzed a more 
general case of the recycle of the product stream of tubular reactors and 
showed that it is possible to get the value of Q greater than 2 in this case. 

Irreversible ARB polymerization in HCSTRs have been analy~ed.'~ For 
isothermal HCSTRs with monomer feed, unsteady state mole balance equa- 
tions for various species have been written. AbrahamI4 has also solved this 
problem using 2 transforms, from which various moments of the MWD have 
been derived. For steady state operation of HCSTR with monomer feed and 
irreversible polymerization, Biesenberger15 has derived analytical expressions 
of the MWD and the various moments of the polymer. He shows that the 
polydispersity index of the polymer is not limited to a maximum value of 2 
and a designer can choose any desired level of Q by adjusting the reactor 
residence time. 

The major difficulty of solving the MWD of reversible ARB polymerization 
lies in the fact that the growth step represented by eq. (1) consists of infinite 
elementary rea~tions. '~-'~ In order to solve the concentration of any given 
species from mole balance equations, the concentrations of all other species 
must be known. In addition, the mole balance equations are nonlinear in 
nature. This implies that all these equations must be solved simultaneously, 
which is a difficult task even for a fast computer. If the mole balance relations 
are differential equations, which is the case for batch reactors, large numbers 
of equations must be solved such that the concentration of the last species is 
negligibly small in order to minimize the truncation error. As opposed to this, 
the MWD equations for HCSTRs are algebraic and, until now, have been 
solved only by usisg suitable numerical techniques, as discussed below. 

The numerical determination of the MWD of the polymer formed in 
HCSTR can be dane by using the Newton-Raphson or Brown's method.20 
The total number of equations to be solved must be kept large to minimize 
the truncation error and, for a finite reactor residence time, this can be as 
large as 300. Another major di5culty with these numerical techniques is the 
problem of providing a good initial guess. 

The numerical techniques for determining MWD of polymer formed in 
HCSTR take considerable computation time. As the residence time increases, 
the CPU time requed also increases and we have observed that the simula- 
tion of an industrial reactor could take as much as 5 CPU h on a DEC 1090.21 
In our earlier work, we attempted to decouple the MWD equations so that we 
could evaluate the concentrations of various species seq~ent ia l ly .~l-~~ This 
leads to considerable reduction in the computation time. 
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Most of the studies reported on the reversible step-growth polymerization 
in HCSTR use numerical techniques due to the nonlinear nature of the 
governing equations. In this article, we have derived an expression for the 
moment generating function from the MWD equations and shown that for 
the reversible polymerization it is a Riccatti differential equation. Under a 
transformation, this can be reduced to a linear second-order differential 
equation which can be solved analytically. From this, we have determined the 
MWD of the polymer formed in an HCSTR analytically. The technique of the 
solution presented in this article has been extended to determine the MWD 
under equilibrium. From this, the number and weight average chain length 
and the polydispersity index for any residence time of HCSTRs and under 
equilibrium condition have been determined. I t  is a common industrial prac- 
tice to apply high vacuum to remove the condensation product from the 
fraction mass in order to push the overall polymerization in the forward 
direction. In this article, we have also examined the effect of vacuum upon the 
MWD of the polymer. 

MOLE BALANCE RELATIONS FOR HCSTRS 

A schematic diagram of an HCSTR is shown if Figure 1, whch has the 
reactor volume of V and the feed flow rate of F,. The feed is assumed to 
consist of various oligomers at  known concentrations [PI],, [P2],, etc. and 
along with the condensation product W, oligomers P, ( i  = 1,2,. . . ) can flash 
from the reactor. Due to costs involved, it is desirable to separate the polymer 
in a suitable separator, as shown in Figure 1, and recycle. Assuming the 
HCSTR operating isothermally at steady state, for the nonflashing situation, 

Fig. 1. Schematic diagram of a homogeneous continuous-flow stirred-tank reactor with flash: 
S = separator; F, = input volumetric flow rate; F = output volumetric flow rate; F, = 

volumetric flow rate of condensation product; [P,], = molar concentration of species P, in the 
feed, n = 1,2, . . . ; [PJ = molar concentration of species P,, in the exit n = 1,2, . . . : [P,,], = 

molar concentration of species P, vaporizing from the reactor. 
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mole balance for various oligomers gives the following dimensionless relations: 

00 

= -2P,P+ 2pwC Pi PI - PI0 

e i = 2  

n -  1 

= -2PnP+ C p,Pn-, P n  - Pno 

c =  1 e 
00 

+2pw Pc-PW(n 
i = n + l  

w- wo 
e = P2 - PW( A, - P) 

where 

00 

p =  C [P,l/~TO = c p n  
n=l n= 1 

0 = k,A~oV/Fo (3i) 

In these equations, the brackets indicate the concentrations of various species. 
Physically, 8 is the average residence time of the HCSTR and is a measure of 
the average time a fluid particle stays within the HCSTR. The total moles P 
of the polymer in the product stream is defined by eq. (3c) and can be 
obtained by adding eq. (2a) and (2b) for all possible values of n. On doing this, 
one obtains 

P - Po 
-- - -P2 + PW(A, - P )  

e (4) 
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In this relation the normalized first moment A, takes on the value of unity 
and Po is the moles of polymer in the feed. Since A, represents the total 
number of repeat units, i t  remains time-invariant. I t  is desired to determine 
P,, for all n, which is done below. 

MOMENT-GENERATING FUNCTION FOR REVERSIBLE 
POLYMERIZATION IN HCSTRS 

In order to determine the MWD of the polymer formed, we define a 
moment generating function G, as 

00 

G = C snP, 
n= 1 

The value of G for the feed is thus given by 

The normalized first moment A,, as defined in eq. (3a), can be rewritten in 
terms of G as 

dG 
A,= lim s- 

s-1-  8s 

represents the total number of repeat units which must be time-invariant. 
The relation for the moment-generating function G can be derived by 

multiplying eq. (2a) by s and eq. (2b) by S ”  and then adding for all n to get 

G - Go sP- G dG -- - -2PG + G2 + 2pW- - 
8 (1 - 4 

where 

00 aG c nS”P,=s- 
as n =  1 

The details of this derivation are included in Appendix A. Equation (6a) can 
be rearranged as 

+ s)G 
1 1 1  

-- G2 - -( - + 2P + pW- 
aG 
as pws pws e 1 - s  
- -  

+ -( 1 5 + E) 
pws e 1 - s  

This is a nonlinear first-order ordinary differential equation, which is trans- 
formed into a linear second-order differential equation by substituting 

Y 
(7) 
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On doing so, one obtains the following: 

d 2  Y dY 
s(1 - s )  2 + [a'(l - s )  + 21 - 

d s  d s  

+[a;9(1 - s)R(s) + ( a  - a o ) ] y = 0  

where 

1 
a,  = - 

PW9 

R( S)  = R, + sR, + s2R2 + s3R3 + . . . +s"R, + * * * ( 9 4  

where 

Equation (8), which has singularities a t  s = 0 and s = 1, can be solved by the 
extended power series method of Frobenius. The MWD is obtained as the 
coefficients of the power series in s as shown below. 

MOLECULAR WEIGHT DISTRIBUTION IN REVERSIBLE 
POLYMERIZATION IN HCSTRS 

Let us assume that the solution of (€9, around singularity s = 0, is of the 
form 

m 
y ( s )  = c cmsm+o 

m=O 

The first and second derivatives are given by 

On substituting these in eq. (8) and collecting terms for the lowest order, we 
get the indicia1 relation 

u [ ( u  - 1) + a' + 2]c0 = 0 (11) 

For nonzero C, the roots of u give two exponents u1 = 0 and u2 = - (a'  + 1). 
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The first solution for the exponent ul = 0 is 
00 

. Y ~ ( s )  = CO C rmsm 
m=O 

and the coefficients rm are obtained from the following recursive relationship 
found from eq. (8) as (details are included in Appendix B.) 

m(m + at - 1) - (a - (Yo) 

(m + l)(m + a' + 2) 

( m  + l ) (m + at + 2) 

rm r m + l  = 

a@( Em-l - Em) + 

where 

ro = 1 (13b) 
In 

E m  = 2 RjrmPj 03c) 
j = O  

The R in eq. (13c) are the coefficients of the polynomial R( s) defined in eq. 
(9) and carry the information regarding the feed distribution. 

Similarly, the second solution for u2 = -(a' + 1) is determined and the 
general solution is written as a sum of these as 

Y ( S )  = Y l ( 4  + Y z ( 4  

m=O m=O 

With the knowledge of y ,  the moment generating function can now be 
determined. It is observed that G is a series in s with integral powers only 
and exponent u2 = - (a' + 1) in eq. (14) is a noninteger. This implies that C$ 
is necessarily zero. In view of this, the general solution of G is obtained by 
dropping the second series term altogether and is given by 

rl 1 + als + a2s2 + - . .  
ro 1 + b,s + b2s2 + ... G =  -/~WS- 

05b) 
rl 
r0 

= -pws-(1 + cls + c2s2 + . . * ) 

where the ai ,  bi, and ci series are given by 

a n  = (n + ')rrz+l/rl 

bn = rJr0 

c,  = a,, - bn - bjcn-j 
\,=I J 
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The r, in these are given by the recursive relation given in eq. (13). Comparing 
the definition of G in (5a) with (15b) gives the MWD of the polymer as (since 
r, is equal to unity) 

P,’ -pw r1cn-,, n 2 2 (17b) 

MWD AT EQUILIBRIUM 

The mole balance relations in eq. (2) a t  equilibrium (for 8 + 00) reduces to 

00 

- 2 P 1 P + 2 p w ~ p , = 0  
i = 2  

n- 1 m 

-2P,P + 1 cP,-i + 2pW P, - pW(n - 1)P, = 0 (18b) 
i = l  i=n+l 

Let us assume that the form of the solution satisfying eq. (18) is 

Since the first moment of the MWD is always unity, eq. (19) satisfies 

Or 

(20) 
2 x = (1 - y )  

In addition, the total moles of polymer, P,, in the reaction mass is given by 

X 
P , = r ( l + y + y 2 +  - ) = -  

(1 - Y >  

Consequently the MWD in eq. (19) is given by 

P, = P;(1 - PJP1 (22) 

This is the Flory’s distribution, which on substitution in eq. (18) is seen to 
satisfy it completely for any p and is consistent with observations made by 
Flory. P, above can be easily determined for given W in the reaction mass by 

-P; + pW(A,  - P )  = 0 (23) 



REVERSIBLE STEP-GROWTH POLYMERIZATION 3213 

One can obtain the same result by the solution of the differential equation 
given in eq. (6) for the limit of 8 -+ 00. 

MWD OF POLYMER IN THE PRESENCE OF FLASH 

In the presence of flashing, the outlet flow rate of the HCSTR would differ 
from the inlet flow rate F, by the amount of the condensation product 
evaparated. Assuming the density in the inlet stream and product stream 
remains unchanged (say it is p), the mole balance relations for polymeric 
species get modified to 

= -2P1P + 2pw(P - Pl) + %PI PI - Pl, 
e P e w  

n - 1  00 

= -2PnP+ c P,P,-, + 2 p w  c P, P n  - ‘no 

i = l  i = n + l  e 

and the condensation product balance becomes 

(254 
w-  w, Pw Pw =P2-pw(x1-P)+-w- 

e P e w  Mwx:oew 

where 

9, = k,X:,V/FW 

Above, pw and M ,  are the mass density and molecular weight of the 
condensation product. The total moles P of the polymer are obtained by 
adding eqs. (24a, b) for all n 

P - P, 
~- - -P2 + pw(xl - P) + %P 

e P e w  

Consequent to the above modification, the relation for the moment-generating 
function also changes-an additional term (pw/pOw)G shows up in eq. (6a). 
However, the transformed second-order differential equation in y remains 
identical to eq. (8) except that a’ is now defined as 

This does not alter the analytical form of MWD and eq. (17) still remains 
valid. 

Evaporation of the condensation product alters the concentrations of W 
and P in the product stream of the HCSTR because of dw (or Fw). Additional 
information on vapor-liquid equilibrium is needed in order to determine this. 
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In the following we consider two cases: In the first one we assume that only W 
leaves the reaction mass and, in the second, both P and W leave. 

CASE A: CONDENSATION PRODUCT FLASHING 

It is assumed that the reaction mass consists of a binary mixture consisting 
of polymer P and the condensation product W. Their mole fractions, xp  and 
xw are given as 

P 
xp = - 

P +  w 
and 

If PT is.the pressure applied to the reactor, P&(T) the vapor pressure of the 
condensation product, then 

W 
-- PT 

x,=-- P & ( T )  P +  W 

I t  is assumed that the polymer cannot be in the vapor phase and the vapor 
liquid equilibrium is given by the Ftaoult’s law. This is done to keep the 
analysis simple, even though the model presented here can be easily extended 
for more complex vapour liquid equilibrium relations. Equation (29) gives 

In eq. (29) x greater than 1 implies that the vapor pressure of the condensa- 
tion product W is less than the applied pressure. This would mean that W 
would not distill and the W and P are the same as those for closed reactors. 
On substituting eq. (30) in eqs. (25) and (26), one can solve the following cubic 
equation for P. 

aP3 + bP2 + CP + d = 0 (31) 

where 

The moles of condensation product condensed from the HCSTR is then 
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computed, using eq. (26), as 

P( k + 1) - ( Wo + Po) 
P ( k  + l)MwATo - p 

Fw = 
OPW 

(33) 

CASE B. POLYMER FLASHING WITH 
CONDENSATION PRODUCT 

With the increase in chain length, it is known that the volatility of polymer 
molecules reduces sharply. As a first approximation, we assume that only 
monomer Pl leaves the reactor. Assuming that Raoult's law is valid, the 
vapor-liquid equilibrium is given by 

Here PEJ), and P& are the vapor pressures of Pl and W, respectively, and PT 
the total reactor pressure. We can solve for the concentration of the condensa- 
tion product in HCSTR using this relation. On substituting this in eqs. (25) 
and (26), Ow can again be evaluated. 

COMPUTATIONAL TECHNIQUE 

For specified reactor temperature and pressure, it  is 6rst ascertained from 
eq. (29) [or eq. (34), in the case where monomer is also flashing] whether there 
is flashing. In case of condensation product flashing, one solves the cubic eq. 
(31) for P. If there is no flashing, W is given by the following stoichiometric 
relation: 

W = ( W 0 + P o - P )  (35) 

Equation (4) can be solved for P without any trial and error. Once this is 
done, Ri and ri can be evaluated sequentially from eqs. (9) and (13) respec- 
tively. Series ai, bi, ci are then obtained from eq. (16) and the MWD of the 
polymer from eq. (17). The solution scheme is summarized in Table I. 

RESULTS AND DISCUSSION 

In several applications, polymerization is carried out in a train of reactors 
which can be any combination of batch and continuous reactors. When the 
HCSTR is placed somewhere in the middle of the train, its feed consists of 
higher oligomers. Since the analytical solution developed in this work is valid 
for any feed, it can be used to determine the characteristic of such reactors 
easily. 

In order to demonstrate the effect of feed upon the polymerization in 
HCSTR, we assume that the feed has Fl01-y'~ distribution given by 

P,, = Pt(1 - Po)"-' (36) 

where Po is the total moles of the polymer in feed. It is seen that the MWD of 
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TABLE I 
Algorithm for the Computation of MWD of the Polymer Formed 

in HCSTRs 

Specify /3, reactor residence time 0 
.1 

Give reactor pressure and temperature 
.1 

From eq. (29) [or eq. (34)] check if there is flashing r 
(a) If there is no flashing, use eq. (35) and calculate P from eq. (4) 

(b) If there is flashing of W, use eq. (31) to calculate P 
I 

I U s e  eq. (13) to determine r, sequentially 
1 

Calculate a,, b,, and c, from eq. (16) 
1 

Calculate MWD from eq. (17) 

the polymer is completely characterized by one variable Po and Po = 1 
corresponds to  the situation where the feed is pure monomer. 

The analytical solution for the MWD of the polymer formed in HCSTRs 
involves only one recursive infinite series, r, ( i  = 1,2, . . .) given in eq. (13). 
The a,, b,, and c, series appearing in eq. (15) are only a minor rearrangement 
as described therein. The rl in eq. (17) is found to be negative and all terms of 
c, series are positive. Since the first moment of the MWD of the polymer is 
always unity, the c, must be a convergent series. In addition, we have carried 
out extensive computations of c, series under all possible variation of reaction 
parameters and checked our analytical solution against the numerical compu- 
tation of MWD.21-24 We found the c,  series to be well behaved and never to 
lead to  any instability of computation. The solution scheme developed in this 
work, this way, represents a convenient technique for determining the MWD 
of the polymer formed in HCSTRs and can easily be implemented even on a 
hand held calculator. The CPU time taken on DEC 1090 computer is less than 
0.1 s. Most of the studies reported in the literature assume monomer feed and 
require numerical determination of the MWD which takes large CPU time 
(sometimes about 1 CPU h for large 8 )  due to excessive iterations. The 
analytical solution by Biesenberger assumes irreversible polymerization with 
monomer feed. In this paper we have relaxed all these assumptions and 
additionally present results in the presence of flashing. 

We first determine the MWD of the polymer when the feed to the HCSTR 
is polydispersed. This is obtained by varying Po in eq. (36) and results have 
been plotted in Figure 2. Results have been reported for two residence times, 
8 = 1 and 8 = 15, and the MWD is seen to become broad as 8 increases. We 
also find that as p increases, the conversion of functional groups reduces and 
some of higher oligomers depolymerize to give a sharper distribution. It is 
sometimes difficult to compare two MWD; however, its moments can be 
compared as done in Figures 3 and 4. 

In Figure 3, we have plotted the average chain length of the product stream 
as a function of residence time of HCSTR. It is seen that for /? = 0.1 and Po 



REVERSIBLE STEP-GROWTH POLYMERIZATION 

0.4 - - A  
3217 

i 
1 
0 

n 
Fig. 2. The effect of residence time (0) [(-) 1.0; (- - -) 15.01 and the nature of initial feed Po 

(characterized by Flory’s distributions) on molecular weight distribution. 

Fig. 
moles 

- 
I I I I 

’.O’ lf4 d.8 8- 8 12.0 16.0 20.0 
e 

3. 
of polymer in the feed, on the chain length vs. residence time. 

The effect of the kinetic parameter j3 and Po[(--) 0.2; (- - -) 0.4; (- - -) 1.01, total 

as 0.2, the starting chain length is 5.0 and it rises to a value of 8.4 and is still 
rising at 8 = 20. As opposed to this for Po = 0.4, the starting chain length is 
2.5 and it goes up to 5 only, which is a smaller increase. This is because, for 
small Po, the reaction mass consists of higher oligomers in considerably larger 
concentration. Any growth reaction of these would lead to larger chain length, 
as observed in this figure. 
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I I I 

2.0 4.2 5.8 7.4 9.0 
1.2 

1.0 

Pn 
Fig. 4. The effect of the kinetic parameter /3 and total moles of polymer in the feed, Po (-) 

0.2;(- - -) 0.4; (- - -) 1.01, on polydispersity index vs. average chain length. 

We have defined polydispersity index Q as the ratio of number- and 
weight-average chain length, p n  and p w ,  given by 

where 

Flory has analyzed step-growth polymerization in the batch reactor with 
monomer as its feed and shown through statistical arguments that the MWD 
of the polymer formed has a binomial distribution. He further showed that 
the polydispersity index is proportional to conversion of functional groups and 
is inversely proportional to pn. For irreversible step-growth polymerization 
carried out in HCSTR, having finite residence time, we find that the MWD of 
the polymer formed is significantly different. 

In Figure 4 we find that Q increases first but, after some time, it begins to 
fall, which can be explained as follows. Bie~enberger'~ has studied irreversible 
step-growth polymerization in HCSTRs and has shown that, for the same 
chain length, the polymer formed in the HCSTR always has a higher Q. Since 
the feed to the HCSTR is assumed to have Flory's distribution, it can be 
safely assumed that this is the product stream of some fictitious batch reactor 
with monomer as a feed to the latter. Flory has shown that Q for the batch 
reactor is never more than 2 while Biesenberger has shown that Q increases 
linearly with conversion. In our studies of reversible polymerization, Q rises 
for small B simply because the reaction mass is closer to the irreversible case 
and therefore Q rises with pn. We have clearly shown that the polymer at  
equilibrium always has Flory's distribution. This means that, as 0 increases, 
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1.0 2.0 3.0 4.0 5.0 6.0 
n 

Fig. 5. The effect of the kinetic parqeter p [(-) 0.1; (- - -) 0.5; (- - -) 5.01 and the extent 
of flashing on the equilibrium MWD: (A) no flashing; (B) 0.5Wm,, removed; (C) 0.75Wm,, 
removed. Po = 1.0. 

the reaction mass is closer to the equilibrium and, consequently, Q falls as 
observed in the figure. It is interesting to observe that, for p = 0.5 and 
Po = 0.4, the change in p,  or Q is small during polymerization and it appears 
as a point on the figure. 

We have shown that, under the equilibrium condition, the polymer always 
has Flory’s distribution. When the average chain length of the polymer 

3 

Fig. 6. The effect of total moles of polymer in the feed Po [(-) 0.2; (- - -) 0.4; (- - -) 1.01, and 
the extent of flashing on equilibrium average chain length vs. kinetic parameter 8: (A) no flashing; 
(B) 0.5Wm, removed: (C) 0.75W- removed; (D) 0.875Wm, removed. 
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D 

--- Po=l. 0 .-.- ----- 
1.25 1 I I I 

0 1.0 2.0 3.0 4.0 5.0 

P 
Fig. 7. The effect of total moles of polymer in the feed Po [(-) 0.2; (- - -) 0.4; (- - -) 1.01 and 

the extent of flashing on equilibrium polydispersity index vs. kinetic parameter 8: (A) no flashing; 
(B) 0.5Wm, removed; (C) 0.75Wm, removed; (D) 0.875Wm, removed. 

becomes large (corresponding to about 90% conversion of functional groups), 
the overall polymerization can be taken as mass transfer (for the condensation 
product) controlling. When this is so, polymeric part of the reaction mass can 
be assumed to be in equilibrium at  the concentration of the condensation 
product within the reactor. It is thus seen that with the analytical solution of 
the equilibrium MWD in this work, one needs to solve only one diffusion 
equation for the condensation product. In generating Figures 5-7 for the 
MWD, p,, and Q for the equilibrium polymerization, we observe that for 
specified Wo and Po in the feed, maximum W, W,,, in the reaction mass is 
given by 

W,, = Wo + Po - Pq (38) 

Pq is the moles of total polymer formed a t  the equilibrium in a closed reactor. 
On application of a vacuum, moles of condensation product fall due to flashing 
from this W,, and can in principle be reduced to any level. In Figure 5, we 
have presented MWD for three levels and we find that the MWD becomes 
broader. It is seen in Figure 6 that this corresponds to a considerable increase 
in chain length and, in Figure 7, that it corresponds to a higher polydispersity 
index. 

CONCLUSIONS 

In this article, we have analyzed reversible step-growth polymerization in 
homogeneous continuous-flow stirred tank reactors. Assuming the equal reac- 
tivity hypothesis proposed by Flory, we have established mole balance rela- 
tions for the MWD of the polymer formed in it. These represent infinite 
algebraic expressions which can be combined into one equation by the use of 
the moment-generating function G ( s ,  6 ) .  The generation relation for G is a 
first-order nonlinear ordinary differential equation which has been reduced to 
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a second-order linear ordinary differential equation under a transformation. 
The latter can be solved using the Frobenius method of series solution; from 
this the analytical solution of the MWD is determined in a natural way. We 
have examined the effect of flashing of the condensation product as well as 
polymer and have derived results for equilibrium polymerization. We find 
that, in the case of the latter, the MWD is given by Flory's distribution, which 
is expected. 

We have shown that the reversibility of polymerization and the polydisper- 
sity of the feed has a great effect upon the MWD of polymer formed in 
HCSTRs. It is observed that as the reactor residence 6 is increased, the 
polydispersity index Q vs. chain length p n  first rises and then falls, giving a 
maximum. This result must be contrasted with that found by Bie~enberger'~ 
for irreversible polymerization, in which case Q increases linearly with p,, 
without any limit. This has been explained by the fact that as 6 increases, 
HCSTR operates closer to equilibrium and the MWD would then be closer to 
Flory's distribution. The nature of the feed is found to have a great effect 
upon the chain length of the polymer formed. As the concentration of higher 
oligomers in feed increases, the growth of the polymer chains would be larger 
for every functional group reacted. As a result, the gain in chain length is 
found to be larger as the average chain length of polymer in feed increases. 

APPENDIX A: DERIVATION OF EQ. (6A) FOR THE MOMENT 
GENERATING FUNCTION G 

Multiply eq. (2a) by s and eq. (26) by sn (for n 2 2) and on adding: 

m m 

m m n - 1  

= - 2  c s"PnP+ c sn c p,Pn-, n - 1  n= 1 

n= 1 n - 2  t - I  0 

m m m 

(39) +2/3WCS" c p , - p w c  s y n  - l)Pn 
n = l  i = n + l  n = 2  

The term on the left-hand side is (G - Go),@. The first term on right-hand side (rhs) is - 2 PG. 
The second term on the rhs is 

m n-1  c sn c p,Pn-, = s"; + s3( PIP2 + P2P,) 

+s4(P1P3 + Pzpz + p, )  
n = 2  r = l  

+s5(P,P4 + p2p3 + p,P2 + P4Pl)  + " 

= SP1 [ SPI + s2P2 + s3P3 + ' . ] 

+ s2pz [ SPI + s2Pz + s3P3 + ' ' ' 3 
+s3P3[ SPI + s2P2 + s 3 4  + ' ' ' 3 
t 
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The third term on the rhs is given by 

n = l  ~ = n + l  1=3 2=4 1 
= 2pw[sp, + ( s  + s2)P3 + ( s  + s2 + s3)& 

+ ( s  + s2 + s3 + s4))ps + " .  ] 

= 2pws[p, + ( 1  + s ) p ,  + (1 + s + 2 ) P 4  

+ ( l + s + s 2 + s 3 ) ) p s +  " '1  
( 1  - s )  (1 - 2) ( 1  ~ s3)  

4 = 2pws - P3 + ~ 

( 1  - s)p2 + ~ 1 - s  1 - s  I 
1 ( 1  - s4) 

(1 - s )  
+- Ps + ... 

The last term on the rhs is 

n=2 

m m 

-PW c s 2 ( n  - I ) P ,  = -BW 
n=2 

Hence the relation in ($9) becomes 

G - GO s P -  G aG 
6 (1 - s )  a s  -= -2PG + G2 + 2pW- - B W ( s  - - 6') 

APPENDIX B: DERIVATION OF THE RECURSIVE 
RELATIONSHIP OF EQ. (13a) 

m 

y ( s )  = 1 c,sm+o 
m-0  

dY 
d s  
- = C(rn + o)C,Sm+o-l 
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and 

Substituting these into eq. (8): 

(s - s " > [ C ( m  + u ) ( m  + u - 1)CmSm+-2 ] + (a' - a's + 2) 

x C ( rn  + u)cms"I+'-l 

+ {(age - a:6s)( Ro + sR, + s2R2 + s3R3 + . . . ) + (a - a,)} 

x c cmsm+a = 0 (44) 

or 

C(rn + u ) ( m  + u - l)CmSm+a-l - C ( m  + u ) ( m  + u - l)CmSm+o 

+ ( a ' +  2 ) C ( m  + U)C,Sm+s-l- a ~ C ( m  + u)CmSm+a 

+ 6 ' a ~ R j ~ C m s m + a + J  

+ ( a  - ao)CmSm+o = 0 (45) 

Collecting terms for the lowest power of s, which is ( u  - 1) at m = 0, gives the indicia1 eq. (11). 
Similarly collecting terms for an arbitrary power (n + u )  of s gives 

(n + 1 + u ) ( n  + 1 + u - 1)Cn+* - (n  + u ) ( n  + u - l)Cn 

n 
+(a' + 2)(n  + 1 + u)Cn+, - a'(n + u)Cn + a@ C RJCn-, 

J = O  

n- 1 

-age RJCn-l-J + ( a  - a,)Cn = 0 
j = O  

or 

[(n + 1 + u ) ( n  + u )  + (a' + 2)(n + 1 + u ) ] C n + ,  

= [(n + u ) ( n  + u - I) + a'(n + u )  - (a - a,)]Cn 

n n 

+a@ RjCn-,- j  - age C RjCn_j 
j = O  j = O  

(47) 
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[(n + u ) ( n  + u - 1) + a ' ( n  + u )  - (a - a 0 ) ] ~ ,  

(n + 1 + u ) ( n  + u + a' + 2) Cn+, = 

+ a@(en-l - c,) 
( n  + 1 + u ) ( n  + u + a' + 2) 

where 

n 

Additionally, if we define 

then 

ro 3 1 

and the above recursive relationship is written for r,, when o = 0 as 

ai, i = 1,2, . . 

b,, i = 1,2,. . 

ci, i = 1,2,. . . 

CM 
G, G* 

APPENDIX C: NOMENCLATURE 
coefficient in the infinite numerator series for G [as given by eq. (15a), expressed 
in terms of the recursive ratio series r, by eq. (16a) 
coefficient in the infinite denominator series for G [as given by eq. (15a)], 
expressed in terms of the recursive ratio series rc by eq. (16b) 
coefficient in the infinite series for G [as given by eq. (15b)], expressed in tznns 
of a, and b,, by eq. (16c) 
coefficient of the mth power in the power series of y [eq. (loa)] 
coefficients for the zeroth power in the power series of the two solutions of y: 

inlet flow rate to CSTR (L/s) 
outlet flow rate from CSTR (L/s) 
flow rate of condensation product W from separator S (L/s) 
moment generating function based on feed conditions [given by eq. (5b)l 
forward reaction rate constant 
reverse reaction rate constant 
molecular weight of condensation product 
molar concentration of oligomeric species P, 
molar concentration of oligomeric species Pn in the feed 
dimensionless concentration of oligomeric species P,, in the reactor 
dimensionless concentration of oligomeric species P,, in the feed 
dimensionless molar concentration of total polymer in the reactor 
dimensionless molar concentration of total polymer in the feed 
dimensionless molar concentration of total polymer at equilibrium 
total pressure at  which the reactor is operating 
vapor pressure of condensation product a t  reactor temperature corresponding 

y1 and yZ [eq. (14)1 

to PT 
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% 
Q 

Pn 

P W  

P 
Pw 

vapor pressure of monomer Pl at  reactor temperature corresponding to PT 
polydispersity index 

0,1,2 ... input feed distribution of species Pl,P2,. .., Pntl [eq. (9e)l 
coefficient ratio in recursive series for y, and y2: r,,, = Crn/C, and r* = C,* /q  
volume of the reaction mass in the reactor (L) 
molar concentration of condensation product in reactor (mol/L) 
molar concentration of condensation product in feed (mol/L) 
dimensionless molar concentration of condensation product in the reactor 
dimensionless molar concentration of condensation product in feed 
dimensionless maximum concentration of W at  equilibrium 
parameter in equilibrium feed distribution 
molar fraction of polymer in CSTR 
molar fraction of condensation product 
the two particular solutions of the “transformed” second-order hypergeometric 
differential eq. (8) 
transformed variable of moment generating function G, according to eq. (7) 
parameter in the hypergeometric differential equation 
parke ter  in the hypergeometric differential equation 
parameter in the hypergeometric differential equation 
kinetic parameter = k; /k ,  
dimensionless residence time of CSTR 
dimensionless residence time of flashing condensation product 
exponent for the power series solution 
roots of the indicial equation 
normalized zeroth moment of MWD 
normalized first moment of MWD 
normalized second moment of MWD 
function defined in terms of recursive ratio series ( r,,,) and inlet feed distribution 
variable r,,, according to eq. (13c) 
number average chain length 
weight average chain length 
m a s  density of polymer (g/L) 
mass density of condensation product (g/L) 
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